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Abstract Our algorithm predicts short linear functional
motifs in proteins using only sequence information. Sta-
tistical models for short linear functional motifs in proteins
are built using the database of short sequence fragments
taken from proteins in the current release of the Swiss-Prot
database. Those segments are confirmed by experiments to
have single-residue post-translational modification. The
sensitivities of the classification for various types of short
linear motifs are in the range of 70%. The query protein
sequence is dissected into short overlapping fragments. All
segments are represented as vectors. Each vector is then
classified by a machine learning algorithm (Support Vector
Machine) as potentially modifiable or not. The resulting list
of plausible post-translational sites in the query protein is

returned to the user. We also present a study of the human
protein kinase C family as a biological application of our
method.

Keywords Kinase substrate prediction . Profile–profile
sequence similarity . Local structural segments .
Linear functional motifs . Swiss-Prot database .
Support vector machine (SVM)

Introduction

The rapid increase in genomic information requires new
automatic techniques to learn protein functions, which are
crucial for controlling intracellular processes. A function of
a protein is partially determined by sequence motifs. In the
case of the phosphorylation process, the location of post-
translationally modified residues is largely determined by
the primary sequence of the target site. Although many
types of kinases are known, the identification of their po-
tential biological targets is still incomplete. High substrate
specificity of protein kinases ensures correct transmission
of signals in cells, but we lack general, efficient and error-
free tools for identification of functional motifs in proteins.
Here we present a machine-learning approach to predicting
various types of linear functional motifs in proteins. Our
approach is based on the classification of biological func-
tional information regarding post-translational modifi-
cation sites in proteins acquired from the Swiss-Prot
database. This classification is then used to predict new
modification sites in proteins.

Most methods that predict functional motifs in proteins
rely on multiple sequence alignments. Proteins can be
grouped into limited numbers of families using similarities
between their sequences. Protein domains or whole pro-
teins belonging to one family share functional attributes,
and are probably derived from a common ancestor. By
studying conserved regions of protein sequences within a
single family, one can derive a signature for such a family
or domain. These signatures, which infer a function of a
protein or its three-dimensional structure, distinguish mem-
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bers of a group from unrelated proteins. A protein signature
can also be assigned to new proteins by formulating hy-
potheses about their function. Conserved motifs that
represent conserved biochemical properties or biological
functions can be used to identify divergent sequences with
low overall sequence similarity. Homology, in such a case,
can be detected even if the sequence similarity is low. One
can also search for protein fingerprints that are defined as
groups of conserved signatures. Such fingerprints encode
protein folds and functional sites in more detail than single
motifs. The PRINTS database [1] provides a compendium
of such fingerprints based on the Swiss-Prot and the
TrEMBL databases. eMOTIF [2, 3] discovers conserved
sequence motifs in families of proteins with a wide range of
specificities and sensitivities. The eMOTIFS database is
derived from multiple sequence alignments from the
BLOCKS+ database [4] and the PRINTS database. A
hybrid database approach combines signature-recognition
methods from different sources to scan a given query pro-
tein sequence against protein signatures. Such methods
search specific databases with pre-configured cutoff thresh-
olds. They return lists of hits in individual databases, and
then these hit lists are combined. InterProScan [5] makes
annotations based upon InterPro member databases. The
PROSITE database [6] allows one to infer function and
classification of proteins using a set of tools: ScanProsite
[7], PRATT [8], PPSearch, PROSCAN and PPscan.

Linear functional motifs contain local sequence informa-
tion around post-translational modification sites. A simple
approach to retrieving this information is based on the ap-
plication of regular expression searches. Regular expres-
sions are built from experimentally verified functional sites
known in proteins and reported in the scientific literature.
The ELM server produces a large number of false positives.
Regular expression searches have difficulty in describing
linear functional motifs by a simple letter pattern. To im-
prove the predictive efficiency and lower the number of
false positives, context-based rules and logical filters
(taking into account taxonomic range, cell compartment
and globular organization) are applied in the ELM re-
sources at http://elm.eu.org/ [9]. Our tool is more conser-
vative, and can be used as an additional filter to remove
some of the false positives. Another approach focuses on
the statistical description of known instances, i.e. short
linear protein-sequence motifs. This method is based on
position-specific scoring matrices constructed from ori-
ented peptide libraries, phage display or other experiments.
These matrices of selectivity values provide relative scores
of candidate functional motifs in evaluated protein se-
quences. ScanSite [10] identifies short protein-sequence
motifs recognized by modular signaling domains, phos-
phorylated by kinases or mediating specific interactions
with proteins or ligands. The current release of ScanSite
(ver. 2.0) includes 62 motifs. Sulfinator [11] focuses only
on the prediction of tyrosine sulfation sites in protein
sequences. It uses Hidden Markov Models (built on the
basis of multiple sequence alignments within sequence
windows of 25 amino acids) to recognize sulfated residues.
Other methods utilize various machine-learning approaches

to characterize the neighborhood of a post-translational
modification site. PhosphoBase provides a large collection
of phosphorylated residues in proteins and information
about peptide phosphorylation by protein kinases [12, 13].
The data have been collected from the literature and cover
(version 2.0, 1998) 414 proteins with 1,052 phosphorylated
residues. The functional motifs are built by statistical
analysis of the sequence specificity of protein kinases. The
analysis is conducted on 9-amino-acid segments around
phosphorylation sites. Our tool uses the same 9-amino-acid
sequence window around phosphorylation sites to predict
annotation. This database is used as a training set for the
NetPhos 2.0 server, which predicts serine, threonine and
tyrosine phosphorylation sites for eukaryotic proteins by
using neural networks [14]. Our service is naturally
complementary to the NetPhos tool. It is based on a
different machine-learning methodology (SVM). It builds
an independent list of plausible phosphorylation sites for a
given query protein. Both lists can be compared and used to
develop a consensus prediction method, which usually
improves the accuracy of prediction. A detailed comparison
with this tool, SVM results from the PhosphoBase database,
and details of the consensus algorithm with sensitivity/
specificity scores will be presented in our next paper.

In our previous paper [15] we developed a library of
local structural segments and a profile–profile matching
algorithm that predicts local structure of proteins from their
sequence information. The Fragments Library prediction
method server (FRAGlib, publicly available at http://ffas.
ljcrf.edu/Servers/frag.html) allows prediction of local
structural conformations of sequence segments around
phosphorylated sites. The algorithm has been applied suc-
cessfully to the characterization of local structure around
phosphorylation sites in proteins [16, 17]. Our results
strongly suggest that sequence information is the most
crucial for successful prediction of phosphorylation sites in
proteins. It can be supplemented by additional structural-
context information (predicted by our segment similarity
method). Only proteins phosphorylated by PKA and PKC
kinases, which represent the largest number of instances in
the Swiss-Prot database, can be used as the benchmark
and the test dataset for our automatic annotation method.
The structural counterpart of prediction is evaluated using
the database of real (experimentally confirmed) structures,
focusing on parts of the main C� chains around phos-
phorylation sites. These structures are collected using the
PSI-Blast server running on the PDB database (PDB-
Blast) (http://www.bioinfo.pl/).

In the Materials and methods section we provide detailed
information about the preparation of the database of short
sequence fragments annotated to undergo post-transla-
tional modification. The Methods section describes the
automatic annotation algorithm for prediction of post-
translational modification sites in proteins. In the Results
section we present benchmarks used for statistical analysis
of quality of the automatic annotation service. We present
also a study of the human protein kinase C family as an
example. Finally, we present conclusions and discuss pos-
sible future improvements of our service.
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Materials and methods

The database of short linear functional motifs
in proteins

Our method of predicting plausible post-translational mod-
ification sites is based on classification of known exper-
imental occurrences. We use sequence information as an
input, because in most cases only the sequence of a
potential target protein is known. Biological information is
acquired from the Swiss-Prot database [18]. All training
cases for our algorithm represent proteins with experimen-
tally annotated biological function contained in this
database. For initial tests we have selected proteins with
acetylation, phosphorylation (by PKA, PKC, CK, CK2 and
CDC2 kinases), sulfation, amidation, hydroxylation, meth-
ylation, and pyrrolidone and γ-carboxyglutamic modifica-
tion sites. These types of biological processes have the
largest number of known experimental instances, which is
crucial for building classification models.

We focus our attention only on those proteins in which
single residues are annotated to perform a specific function.
For each type of post-translational modification, the list of
proteins with at least one site annotated to undergo the
particular modification is fetched from the Swiss-Prot
database. In order to maximize the classification accuracy
of models, we neglect all sites annotated “by similarity”,
“partial”, “potential”, “probable” or “predicted”. The re-
maining sites are used to create the dataset of positive
cases, which includes all sequence segments dissected
from parent proteins with a length of nine amino acids
(positive instances). All sequence segments are centered on
the annotated residue. If a segment is near a protein end,
missing positions are substituted by 'X', so the central
location of annotated residues in all segments is preserved.
All redundant segments, having the same sequence, are
removed from the dataset. The length of a linear motif (nine
residues) is optimized to ensure the maximum performance
of the method for all types of linear functional motifs. It
is possible that certain types of motifs would benefit from
a longer length that would be more specific. To sample
the background preferences for each position in these
short sequence segments, we build for each type of post-
translational modification a dataset of negative cases
(negative instances). The list of proteins is again fetched
from the Swiss-Prot database. From this list we randomly
choose a large number of short sequence fragments (ap-
propriate to the central amino acid to be modified) that
are not annotated to undergo this particular modification.
Those two datasets (positive and negative instances) for
each type of functional motif are then used in training of
the SVM.

In the case of phosphorylation by PKA and PKC
kinases, we use 67 proteins with PKA phosphorylation (86
different sequence segments) and 49 proteins with PKC
phosphorylation (56 different segments). Sequence seg-
ments with the proper central residue (according to the type
of phosphorylation process) that are not annotated as
functional, are used as negative cases. Here, in order to

obtain background preferences for phosphorylation sites,
we extract 14,353 PKA-negative and 14,369 PKC-negative
sequence fragments with the correct central residue (S or T
amino acids). These negative instances are chosen ran-
domly from proteins in the Swiss-Prot database and
annotated to have at least one phosphorylation site.

Methods

Local structure preferences of linear functional motifs

The next step in our analysis is to quantify local structural
preferences around post-translational motification sites
using protein databases. First we obtain experimental
structures of proteins with the PDB-Blast server (http://
www.bioinfo.pl/) developed by our group, in order to get
possible PDB-deposited structures of proteins with post-
translational motification sites. The number of collected
structures for proteins with post-translational modifications
is quite low, and is inadequate for training purposes any
machine learning algorithm. In many cases even though
coordinates of annotated proteins are available, coordinates
for the actual modification sites are missing. Functional
motifs are frequently located in unstructured parts of
proteins.

In order to improve the structural statistics we have
developed (FRAGlib server, publicly available at http://
ffas.ljcrf.edu/Servers/frag.html) [15] a profile–profile match-
ing algorithm that predicts local structures of short linear
sequence segments. This algorithm has been applied suc-
cessfully to the characterization of local structure around
phosphorylation sites in proteins [16, 17]. Predicted local
structures are in qualitative agreement with the real
structures. A comparison with other available structure
prediction tools like ROSETTA [19, 20] or HMMstr/I-sites
[21] has been performed [17]. The difference between the
results of those methods and our results (in modeling local
structural preferences around phosphorylation sites) is
within the accuracy of our method. Our results strongly
suggest that sequence information is the most crucial for
successful classification of functional linear motifs in
proteins.

In the case of phosphorylation by PKA and PKC ki-
nases, we collect structural models for 56 proteins with
PKA and 38 with PKC phosphorylation sites. However, we
found only 11 crystal structure segments around sites with
both PKA and PKC phosphorylations. Most phosphoryla-
tion sites are located in unstructured parts of proteins,
which are difficult to crystallize and frequently those co-
ordinates are missing in the PDB. In order to obtain
background preferences for sites with known structures, we
also extract 340 PKA-negative and 141 PKC-negative sites
from protein segments with assigned coordinates and
correct central residues (S or T). We analyze the local
structure composition of these positive and negative cases.
While sequence compositions of both types of instances
display clear differences, much less significant differences
are observed between local structures [16]. The structural
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part of the prediction score helps in predictions, but the main
difference between phosphorylation by PKA and PKC
kinases was due to the sequence-related part of the score.
This is the reason for using only sequence information and
ignoring local structure information in our automatic pre-
dictor based on SVM statistical learning theory.

Sequence representation of linear functional motifs

In order to build a detailed sequence model, both datasets
of segments (positives and negatives) for each type of post-
translational modification are projected onto multi-dimen-
sional space. Statistical learning theory is used to classify
all cases and construct the boundary between positives and
negatives. We used five different generic representations of
a short protein sequence segment and five additional
combinations of them.

The first representation (the binary one called here BIN)
encodes each position of a segment into a long 20 di-
mensional vector of binary values 0 and 1. The value 1 is
taken if the specific type of amino acid is present at this
position in a segment and 0 otherwise. Such a representa-
tion in the case of a segment nine residues long has di-
mensionality 9*20=180. For example a single residue Tyr
(Y) is represented here as a vector with coordinates
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] (assuming that the
first position in the vector corresponds to tyrosine). Any
vector representing a single segment has nine coordinates
equal to 1, all remaining coordinates have 0 values.

The second representation (BLOSUM) is based on the
BLOSUM62 matrix. Each position of a sequence segment
is represented by a 20 dimensional vector of the substitu-
tion scores between the amino acid found in the projected
segment at this position and all existing 20 amino acids.
For example if Tyr is found at the first position in a segment
we represent it with the appropriate Tyr column from the
BLOSUM62 matrix. In the case of fragments nine residues
long, we have a 180 dimensional representation built from
nine columns of the substitution matrix for all amino acids
in the projected segment.

The LOOKUP representation does not use a 20 dimen-
sional vector for each residue in a segment but a scalar
value equal to its normalized sequence preference. Nor-
malized preferences are calculated separately for nine
positions within a segment. For example, the normalization
for Tyr in the first position of a segment is made by
dividing the probability of finding Tyr at the first position
in annotated segments (positives) by the probability of
finding it in unannotated segments (negatives). This pro-
jection uses 9, dimensional vectors to represent segments 9
amino acids long.

The profile projection (PROF) uses the same normalized
preferences for each amino acid in a segment but takes
them as 20-dimensional vectors. It constructs a Position-
Specific Scoring Matrix (PSSM) of length 9 from the

positive examples of sites, and represents each residue in a
9-amino-acid segment by its scores against a motif. Each
position is projected as a 20-dimensional vector of nor-
malized preferences for all types of amino acids multiplied
by the appropriate amino-acid column from the BLO-
SUM62 matrix. If we find Tyr in the segment, we multiply
all amino-acid preferences by the Tyr column of the
substitution matrix. All nine positions of a segment are
represented in the 180 dimensional space.

The last generic representation (SPARSE) is similar to
the binary one, but instead of each binary value 1 it takes
the normalized preference for the type of amino acid found
at a certain position of a segment. For all other amino acids
we put into the vector.

We also have tested five additional combinations the
above projections like BIN+LOOKUP, SPARSE+LOOKUP
etc. These are built by representing a sequence fragment
by both projections, using all dimensions from the first
and the second representation and taking the Cartesian
product of the two vectors. The resulting combined re-
presentation has additional information that may help to
increase prediction accuracy.

Support-Vector-Machine classification models
of linear functional motifs in proteins

We use a statistical learning approach to classify positive
and negative datasets and construct the boundary between
them for each type of post-translational modification. The
classification of all known instances after embedding them
into one abstract feature space is done within the support-
vector-machine (SVM) framework [22–24]. A detailed
description of the version of the method used, together with
a list of references is available on our server’s website. In
order to extract relevant information from heterogeneous
data, a SVM tries to separate the two sets of training vectors
with an optimal hyperplane. The optimum is reached for a
hyperplane that maximizes the separating margin between
the two classes of the training vectors. A typical SVM
method uses several hundred-thousands of training exam-
ples and many thousands of support vectors for large
datasets of positive and negative instances. Our sequence-
fragments database is highly sparse (only a small number
of positives). The SVM approach even in our case of low
numbers of available observations enables us to construct
predictive models with great generalization power. SVMs
seek globally optimized solutions and avoid over-fitting
even for large dimensionality of the data, so large number
of features (as in our binary BIN representation of sequence
segments) are allowed.

The output of the training phase for each type of post-
translational modification is a classification model. It
consists of a set of D support vectors Tj and αi, which are
non-zero, positive real numbers that are obtained from the
optimization procedure. For any projection T of the input
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space of segments [x] onto the representation space, all
models are given in a form of the cost function:

f T x½ �ð Þ ¼
Xi¼D

i¼1

li�iK ’ T x½ �f g; ’ Tif gð Þ; (1)

where K(T,Ti ) is a polynomial kernel function that defines
the feature space, ϕ is a nonlinear mapping function, and li
are the known a priori class labels for support vectors. We
use li =+1 for positive cases and li =−1 for negative ones.
The polynomial kernel function is a positive definite
function KðT ;TiÞ ¼ ðah’fTg; ’fTigi þ cÞd reflecting the
similarity between an input sample and the set of support
vectors Ti. This type of kernel has been used extensively in
bioinformatics [25–27].

The number of free parameters for this quadratic pro-
gramming problem is equal to the number of all instances
in the training dataset. The non-zero parameters αi describe
the strength of the particular i-th support vector in the
decision function. The SVM chooses as support vectors
those points that are the closest to the separating hyper-

plane. The mapping function ϕ need not be defined ex-
plicitly because in the kernel function only its inner product
is used.

Single residue post-translational modification predictor

The methodology used by our post-translational modifica-
tion-site predictor is as follows. It receives the sequence of
a query protein as an input and it predicts the post-
translational modification sites of a certain type. The server
uses the SVM classification models for all types of short
linear functional motifs described in the previous section.
First it dissects a query protein into overlapping short
segments of nine amino acids. For each segment xj, it
assigns a label using the SVMmodel constructed according
to its cost function (see Eq. (1)). Residues that have a score
(the value of the cost function) larger than a given cutoff
value b are annotated as plausible modification sites. These
points representing sequence segments lay in a region
classified as positive by the SVM model’s hyperplane with
b given as the margin value. For purposes of our Web

Table 1 Recall values of the SVM training with polynomial kernel ((sa*b+c)^d) for all types of considered short linear functional motifs

Recall
precision

Number of
positives/
negatives

BIN
(%)

BIN+
LOOKUP
(%)

SPARSE
(%)

SPRASE+
LOOKUP
(%)

BLOSUM+
LOOKUP
(%)

LOOKUP
(%)

BLOSUM+
SUM_PROF
(%)

SUM_PROF
(%)

PROF
(%)

PROF+
LOOKUP
(%)

PKA 86/14353 12 43 36.1 37.2 41.9 41.9 39.5 37.2 41.9 41.9
PKC 56/14368 2 16 14.3 14.3 17.9 0 0 0 17.9 17.9
CDC2 41/14375 0 29 22.0 24.4 24.4 22.0 0 0 9.8 17.1
SULF 83/6426 40 40 38.6 39.8 47.0 38.6 13.3 7.2 48.2 57.8
CK2 62/11746 0 18 19.4 21.0 12.9 14.5 0 0 11.3 12.9
CK 85/11739 0 11 11.8 12.9 8.2 5.9 0 0 9.4 9.4
ACETY 552/10014 90 84 87.7 84.4 87.7 90.0 11.6 0 10.0 87.7
METHY 215/10000 31 32.1 35.4 32.6 33.0 17.7 0 0 34.0 36.3
HYDRO 363/10000 69 60.9 57.9 66.4 68.0 56.5 64.7 64.7 70.8 68.3
AMID 723/10000 96 58.8 58.9 58.8 58.0 58.5 39.0 37.8 51.3 58.8
PYRRO 390/10000 59 47.4 47.4 47.4 47.4 47.4 1.3 0 13.3 47.4
GAMMA 232/10000 59 45.7 53.9 47.0 58.6 31.5 21.6 15.1 47.8 47.8

We present results for all types of projections (columns) and post-translational modifications (rows) using the recall R value, which measures
the percentage of correct predictions (the probability of correct predictions). R is computed using the leave-one-out procedure, which
removes from the training data one sample, constructs the model on the basis of the remaining training dataset and then tests the prediction
of the model on the removed sample. The resulting error estimators are averaged for all such models (for all positive and all negative
instances)
Data are collected from the Swiss-Prot DB annotation tables (excluding “BY SIMILARITY”, “PREDICTED”, “PROBABLE”,
“POTENTIAL” or “PARTIAL” annotations). Blue color denotes the best results, purple the second best. The worst results (no trained
model) are marked in brown, the non-zero lowest results in red. Recall equals to 0% and precision is not well defined if the SVM training
cannot be finished. (for some types of linear functional motifs and some types of projections the training procedure fails). The most
stable are: profile PROF+LOOKUP, SPARSE+LOOKUP or BLOSUM+LOOKUP methods. Other types of methods have lower
efficiencies (recall/precision). The second column in the table gives the number of positives and negatives for each type of activation
process. In the following columns we present results for 10 different methods for preparing SVM input vectors representing each
segment (of length 9 amino acids). The first one (BIN) is the simplest. The BIN method uses binary representation of amino acids in the
SVM input vector. The BIN+LOOKUP includes additional vectors of nine values (the size of segments) of frequency ratios between
positives and negatives for particular amino acids found in the input segment and at each position in every predicted segment. The SPARSE
method puts instead of 1 the value of frequency ratio between positives and negatives for the particular amino acids found in the
input segment at each position of the predicted segment. The SPARSE+LOOKUP includes also the frequency ratios for segments. The
LOOKUP vector uses only frequency ratios for amino acids found in a query segment. The BLOSUM+LOOKUP method rescales
them with the BLOSUM62 coefficients. The SUM_PROF uses only the sum over the all frequency ratios (dot product), and the BLOSUM
+SUM_PROF additionally employs BLOSUM62 similarity matrix. The last two methods use the entire frequency information
calculated for both (positives and negatives) datasets with, or without separate LOOKUP information
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server, we use only the single most effective type of a
kernel (a polynomial one). Our method is a simple one-
vote-wins approach, where we annotate all segments with
positive verification by at least one model.

The output page of our service contains two main parts.
The first part is a detailed description of each scan type
and post-translational modification pattern. For each SVM
model, the server lists a number of positive and negative
instances used in training and precision and recall errors
calculated during the training phase. The second part of
the output provides results of predictions for each model.
It contains the parent protein information, a local segment
sequence predicted at the modificated site, its position and
its output score with values in the range [0.000–5.000].
The higher the output score, the greater the confidence of
prediction.

Potential functional motifs are sometimes repeated when
predicted by various methods (with different scores). Each
method predicts somewhat different set of peptides as a
phosphorylation functional motif. Our automatic predictor
uses identity search or SVM scan. Users should analyze
sequences using both methods in order to investigate a
broader set of possibilities. A higher output score indicates
a greater confidence of prediction. This means that po-
tential segments are more similar to some of functional
motifs used in the SVM training.

Results

The performance of SVM classification models for each
type of linear functional motif is described by three mea-

sures of accuracy: classification error E, recall R and
precision P:

E ¼ fpþ fn

tpþ fpþ tnþ fn
� 100%;

R ¼ tp

tpþ fn
� 100%;

P ¼ tp

tpþ fp
� 100%:

(2)

The tp is the number of true positives, fp is the number of
false positives, tn is the number of true negatives and fn is
the number of false negatives. The classification error E
provides an overall error measure; whereas recall R mea-
sures the percentage of correct predictions (the probability
of correct prediction). Precision P gives the percentage of
observed positives that are correctly predicted (the measure
of reliability of the positive instances prediction). These
measures of accuracy are calculated a using a precise but
computationally intensive leave-one-out procedure. The
leave-one-out test removes from the training data one
sample, constructs the model on a basis of the remaining
training dataset and then tests the prediction of the model
on the removed sample. The resulting error estimators are
averaged over all such models (for all positive and all
negative instances). For the purpose of the leave-one-out
test in the PROF/LOOKUP representation, we calculate
each time the normalized sequence preferences for all types
of amino acids for any position in the linear sequence
fragment without using the removed samples in testing.
(By doing this we avoid potential bias in the results).

We collect results for all projections of sequence frag-
ments used separately for all types of post-translational

Table 2 Precision P of the SVM learning with polynomial kernel ((s a*b+c)^d) for all types of considered short linear functional motifs

Recall
precision

Number of
positives/
negatives

BIN
(%)

BIN
+LOOKUP
(%)

SPARSE
(%)

SPRASE
+LOOKUP
(%)

BLOSUM
+LOOKUP
(%)

LOOKUP
(%)

BLOSUM
+SUM_PROF
(%)

SUM_PROF
(%)

PROF
(%)

PROF
+LOOKUP
(%)

PKA 86/14353 77 59 55.4 74.4 69.2 85.7 81.0 68.1 75.0 76.6
PKC 56/14368 100 43 44.4 40.0 90.9 - - - 83.3 62.5
CDC2 41/14375 - 32 23.7 33.3 28.6 69.2 - - 20.0 28.0
SULF 83/6426 97 75 74.4 73.3 76.5 72.7 100 100 87.0 78.7
CK2 62/11746 - 48 44.4 39.4 50.0 100 - - 53.9 53.3
CK 85/11739 - 36 35.7 40.7 63.6 71.4 - - 57.1 36.4
ACETY 552/10014 96 88.9 95.8 91.9 95.7 4.8 97.0 - 69.6 94.9
METHY 215/10000 99 70.4 80.9 76.1 76.3 74.5 - - 93.6 78.0
HYDRO 363/10000 70 67.8 68.4 68.7 70.8 65.3 62.5 62.5 69.3 69.3
AMID 723/10000 97 91.4 91.4 91.8 92.3 91.0 92.2 89.8 91.4 96.2
PYRRO 390/10000 93 95.9 90.2 85.7 98.9 86.5 100 - 89.7 89.4
GAMMA 232/10000 100 88.3 91.2 82.6 88.9 78.5 90.9 71.4 92.5 92.5

We present results for all types of projections (columns) and post-translational modifications (rows) using the precision P value that gives
the percentage of observed positives that are correctly predicted (a measure of reliability of prediction of positive cases). The P is
computed using the leave-one-out procedure, which removes from the training data one sample, constructs the model on the
basis of the remaining training dataset and then tests the prediction of the model on the removed sample. The resulting error esti-
mators are averaged for all such models (for all positive and all negative instances)
“-” means precision is not well-defined
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modification sites. The results considered are shown in
Tables 1, 2 and 3. For all types of post-translational mod-
ification sites, the best kernel is the polynomial one. For
this type of a kernel, the most stable representations are
those that are mixed with the LOOKUP projection (e.g.
PROF+LOOKUP and BLOSUM+LOOKUP). Other pro-
jections (e.g. generic BIN or PROF) have some advantages
for particular types of modification sites, but have lower
overall efficiency (small recall and precision values). When
the number of positive instances is large, the simple binary
method BIN becomes the most accurate; while in cases of
lower numbers of occurrences profile methods yield better
results. This can be explained by a higher sequence sim-
ilarity between the instances tested in a larger collection of
positives. The SVM finds a proper classification scheme of
a test set more easily with a simple representation than with
a more complex one. The linear kernel function is not
efficient in the case of more complicated sequence sig-

natures of post-translational modification sites. However,
in some cases (PKA phosphorylation with SPARSE+
LOOKUP representation) SVM models of this type are
more efficient for the polynomial kernel. In the case of a
radial basis kernel, an SVM frequently fails to build the
model. In the case of large numbers of instances, the simple
LOOKUP method for this type of kernel is the most
accurate. Remarkable cases are acetylation, amidation and
pyrrolidone, where the system with LOOKUP embedding
reaches the greatest efficiency with the polynomial kernel.

The study of human protein kinase C family
with the AutoMotif server

As an example, we show in Fig. 1a simple study of
phosphorylation for the human protein kinase C family,
whose members are involved in many biological pro-

Fig. 1 Search for PKC auto-
phosphorylation sites in PKC
kinase family. Results of bio-
logical application of the
AutoMotif Server for finding
sites phosphorylated by PKC
kinases are shown. The main
type is autophosphorylation of
threonine on the kinase domain,
that is observed for all PKCs
except mu and nu. Phosphory-
lation of serine on the C2
domain is observed for alfa,
beta1 and gamma PKC. As the
C2 domain is responsible for
activation of PKC in response to
secondary messangers (Ca2+)
this suggests a presence of
feedback disabling aberrant
activation of PKC in case of
excess of secondary messengers

Table 3 The overall classifica-
tion errors for three generic
embeddings: binary (BIN),
lookup and profile (PROF) with
numbers of support vectors used
for each type of post-transla-
tional modification

The first column presents num-
bers of positive instances found
in the Swiss-Prot DB using
annotation information
(excluding annotations: BY
SIMILARITY, PREDICTED,
PROBABLE, POTENTIAL or
PARTIAL annotations)

Active Site Type #positives BIN LOOKUP PROF

PKA phosphorylation 86 0.55% / 587 0.39% / 143 0.43% / 258
PKC phosphorylation 56 0.38% / 787 0.40% / 154 0.33% / 390
CDC2 phosphorylation 41 0.28% / 486 0.25% / 83 0.37% / 137
CK2 phosphorylation 62 0.53% / 688 0.45% / 157 0.52% / 328
CK phosphorylation 85 0.72% / 931 0.69% / 229 0.70% / 509
Acetylation 552 0.74% / 1037 94.92% / 236 4.93% / 1650
Sulfation 83 0.78% / 573 0.97% / 141 0.75% / 262
Amidation 363 0.47% / 974 3.19% / 800 3.61% / 1234
Hydroxylation 363 2.11% / 1221 2.58% / 575 2.12% / 677
Methylation 215 1.47% / 1605 1.86% / 326 1.44% / 890
Pyrrolidone 390 1.71% / 1669 2.25% / 563 3.31% / 1263
Gamma-carboxyglutamic 232 0.94% / 1215 1.75% / 413 1.27% / 518
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cesses, including development, memory, differentiation,
proliferation and carcinogenesis [28]. The 11 human
isoforms of PKC can be divided into three groups. So-
called conventional PKCs (PKC α, β, γ) have the same
domain organization: C1-C1-C2-S/T kinase C (Fig. 1),
where C1 is a phorbol ester/diacylglycerol binding do-
main and C2 is a calcium-dependent membrane-targeting
module. The “novel PKC” group represented by δ, ɛ, η
and θ is comprised of the same modules, but ordered
differently than the group described previously (C2-C1-
C1-S/T kinase C). Both of these PKC subfamilies require
DAG (diacylogricelol) and calcium for their activation
[29]. The remainder of the PKC protein family included in
the category “atypical PKC” (μ, ν, ι, ζ) contains ad-
ditional domains and needs only DAG for activation. We
used the AutoMotif site to search for the phosphorylation
sites in the PKC family (see Table 4).

Discussion

The analysis of post-translational modification sites by
support vector machines allows for a fast and accurate
(highly conservative) prediction of protein function. High
overall precisions of the best methods allow users to gain
deep insight into plausible functional characteristics of new
proteins of unknown function. Recall efficiency ensures

that information from previously verified sites will not be
lost during automatic scans of known instances. The al-
gorithm can be executed in a pipeline through our Web
interface. Because of this, large-scale genomic analysis
becomes feasible.

The main problem for some functional motifs is in-
sufficient number of experimentally verified cases. Our
annotation predictor can be improved significantly when
statistical algorithms are utilized for more rigorous quan-
tification of results. The numbers of support vectors for
some of the models studied are large due to high di-
mensionalities of the embedding spaces and complicated
shapes of the separation hyperplanes between positive and
negative instances. The number of support vectors could be
reduced significantly by choosing an initial low-dimen-
sional encoding of amino acids in terms of their general
physicochemical properties such as: hydrophobicity, hy-
drophilicity, polarity, volume, surface area, bulkiness or
refractivity (see [30]).
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Table 4 Results of a simple
study of phosphorylation by
human protein kinase C family

The SVM with a binary repre-
sentation (BIN) identifies simi-
lar patterns of phosphorylation
in analyzed sequences. The
main type is phosphorylation of
threonine on the kinase domain,
that is observed for all PKCs
except mu and nu. Phosphory-
lation of serine on the C2
domain is observed for alfa,
beta1 and gamma PKC. Predic-
tions of phosphorylation are
summarized in Tables 1 and 2.
Notice the fact that all instances
of phosphorylation found with a
simple search were also identi-
fied by the SVM algorithm, but
with scores varying from 0.0192
(T-17, PKB beta1) to 1.0006
(T-403, PKC iota)

Protein Predicted motif Start Centre End Size Score Swiss-Prot
annotation

PKC alfa (NP_002728.1) DRRLSVEIW 237 241 245 9 0.22
VTTRTFCGT 493 497 501 9 0.67

PKC beta1 (NP_002729.2) EGEESTVRF 12 16 20 9 0.23 +
GEESTVRFA 13 17 21 9 0.02 +
DRRLSVEIW 237 241 245 9 0.22
VTTKTFCGT 496 500 504 9 1.00 +

PKC delta (NP_006245.2) SRASTFCGT 503 507 511 9 1.10
PKC epsilon (NP_005391.1) ASGSSPSEE 333 337 341 9 0.41

VTTTTFCGT 562 566 570 9 0.90
PKC gamma (NP_002730.1) ERRLSVEVW 237 241 245 9 0.59

ERRGSDELY 369 373 377 9 0.68
TTTRTFCGT 510 514 518 9 0.42

PKC eta (NP_006246.2) VTTATFCGT 509 513 517 9 0.72
PKC iota (NP_002731.2) IGRGSYAKV 251 255 259 9 0.01

DTTSTFCGT 399 403 407 9 1.00 +
PRSMSVKAA 473 477 481 9 0.24

PKC mu (NP_002733.1) RRRLSNVSL 201 205 209 9 0.36
LLQKSPSES 231 235 239 9 0.03
KRKSSTVMK 417 421 425 9 0.02
RKRYSVDKT 825 829 833 9 0.33
GERVSILXX 906 910 912 7 0.71

PKC nu (NP_005804.1) RKRYSVDKS 818 822 826 9 0.13
PKC theta (NP_006248.1) AKTNTFCGT 534 538 542 9 0.29
PKC zeta (NP_002735.2) IGRGSYAKV 258 262 266 9 0.01

DTTSTFCGT 406 410 414 9 1.00 +
PRFLSVKAS 478 482 486 9 0.08
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